

VSELF 40 Series

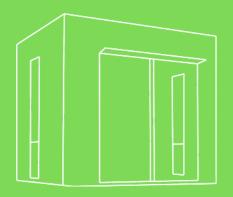
BUILDING STRUCTURE TECHNOLOGY

KIT SYSTEMS PRODUCT RANGE

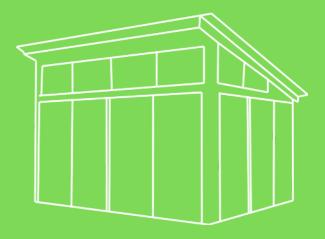
About ProMAKS

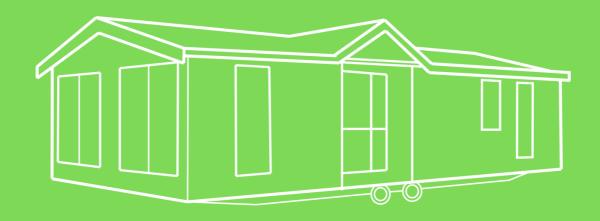
ProMAKS V-Series is a structure technology designed for faster, flexible and durable building solutions with high capacity production.

We offer our range of innovative systems available as flat packed kits, complete with everything you need to build to an exterior finish, freeing you up to focus on the design & finish of the interior to your client's specifications.


- Ventilated Structure
- Energy Efficiency
- Smart Connection
- Quick and Easy Assembly
- Flexible Design
- Effective Insulation
- Easy to integrate flexible
- Versatile Structure

PRODUCTS


V>SELF 40 Series



V>EASY 50 Series

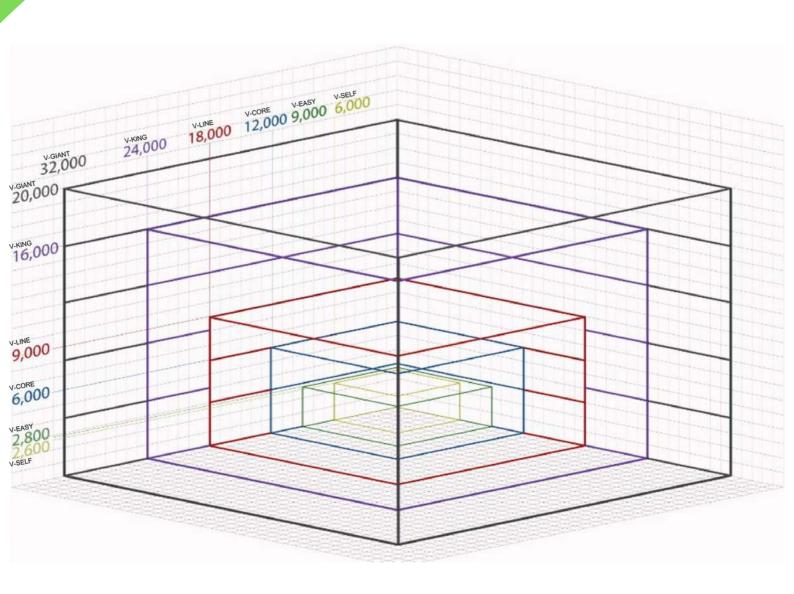
V>CORE 80 Series

PRODUCTS

V>LINE 100 Series

VXING 120 Series

V>GIANT 150 Series

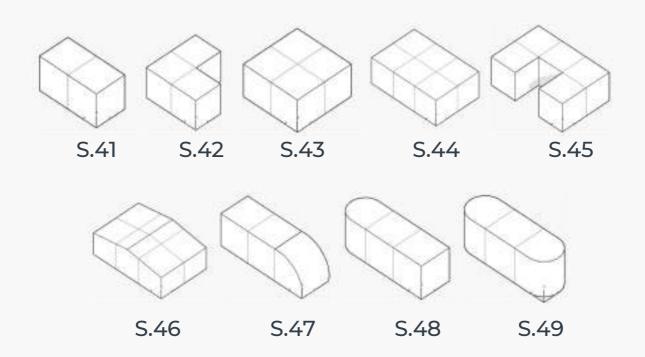


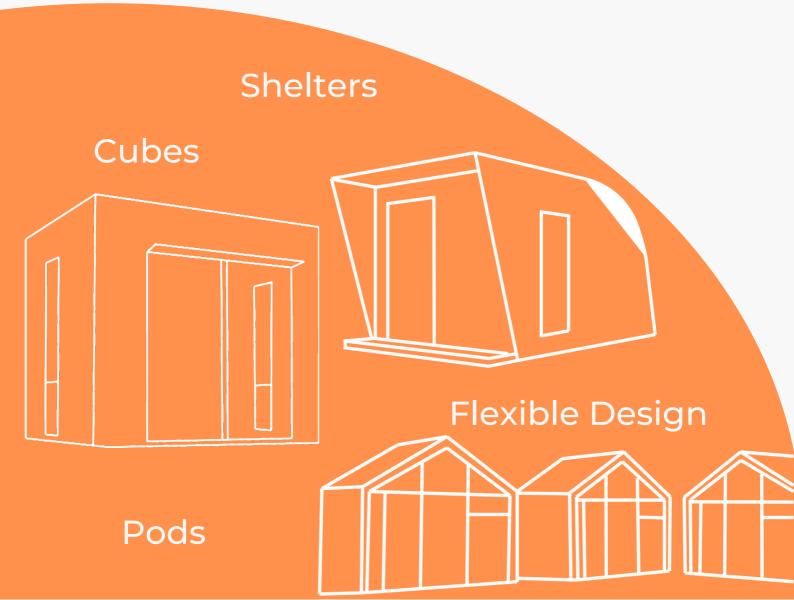
SMART KIT SYSTEM SERIES

V>SELF 40 Series

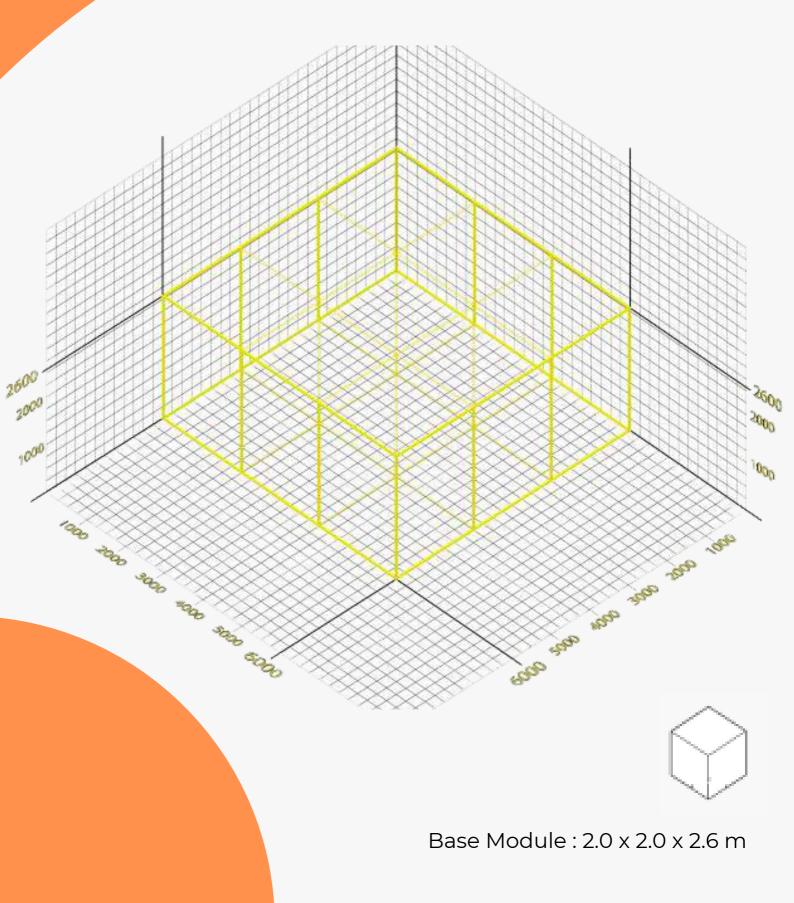
V>EASY SO Series

V>CORE 80 Series

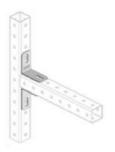

VXINE 100 Series


VXING 120 Series

V)GIANT 150 Series


VSELF 40 Series

VSELF 40 Series


V>SELF 40 Series

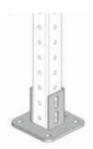
Smart Connection

PMKS-KD-450 Promega Connection

PMKS-KD-451 Promega Connection

PMKS-KD-452 Promega Connection

PMKS-MFS-040/050 Promega Connection

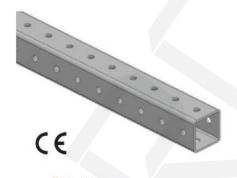

PMKS-PC-050

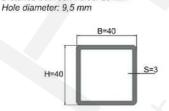
PMKS-TTA-040/050 Promega Connection Promega Connection


PMKS-TDE-040/050 Promega Connection

PMKS-TTA-041/051 Promega Connection

PMKS-TTY-040/050 Promega Connection


PMKS-TTY-041/051 Promega Connection


PMKS-TTY-042/052 Promega Connection

ProMAKS Profile

PMKS-PRF-040-001

Delik arası mesafe: 25 mm Delik çapı: 9,5 mm Distance between holes: 25 mm

Connection Pieces

PMKS-KD-450

PMKS-KD-451

PMKS-KD-452

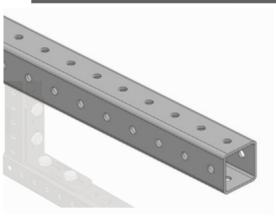
PMKS-MFS-040/050

PMKS-KOD-100-001

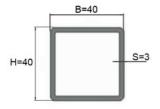
PMKS-PC-050 PMKS-TTA-040/050

PMKS-TDE-040/050

PMKS-TTA-041/051



PMKS-TTY-040/050 PMKS-TTY-041/051

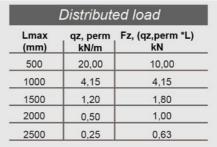

PMKS-TTY-042/052

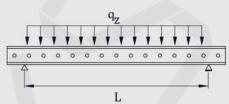
Medium Duty V-SELF Series Structural Systems

Distance between holes: 25 mm Hole diameter: 9,5 mm

Service

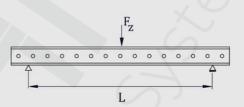
Promaks is modular kit structural system, provide easy installation with self-threading bolt and medium load capacity due to its special design.

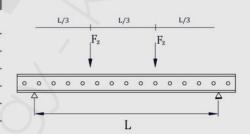



Materials and Type

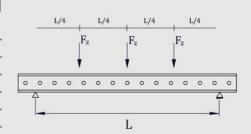
Steel S235 JR

Coating


EN 1461 Hot-dip galvanized 92µm minimum Hot-dip of galvanize.


qz[kN/m] as permanent load at L

Р	oint load	
Lmax (mm)	Fz, perm kN	
500	4,80	
1000	2,40	
1500	1,15	\angle
2000	0,63	
2500	0,37	


Fz[kN] as permanent load at L/2

2 Point loads									
Lmax (mm)	Fz, perm kN								
500	3,70								
1000	1,50								
1500	0,65								
2000	0,36								
2500	0,22								

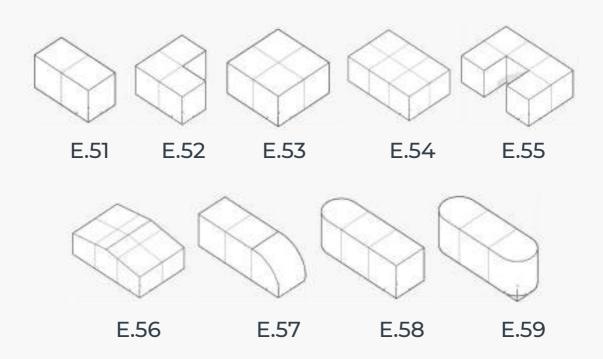
Fz[kN] as permanent load at L/2 and 2*L/3

	3 Point loads
Lmax (mm)	Fz, perm kN
500	2,5
1000	1,10
1500	0,48
2000	0,26
2500	0,16

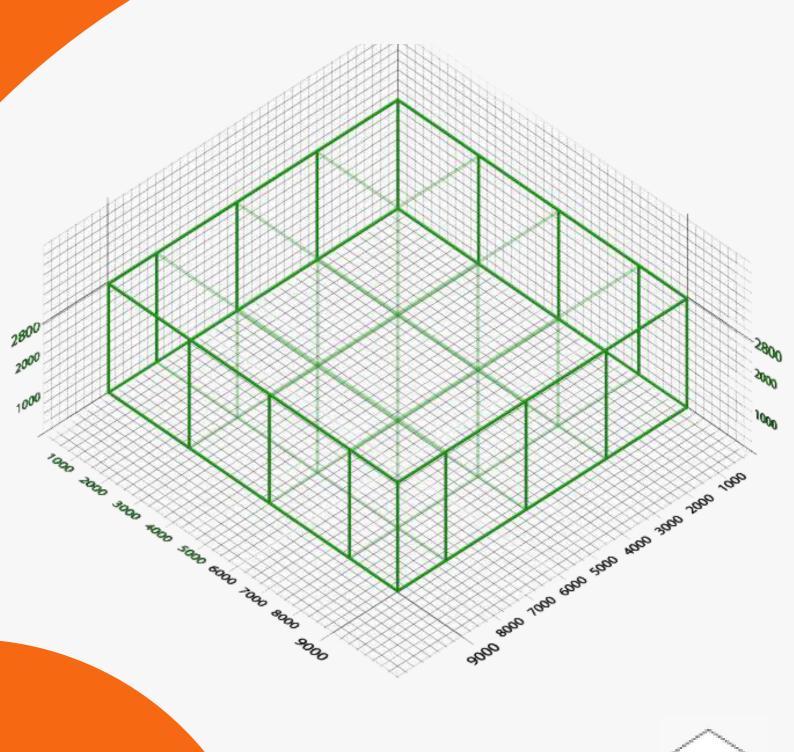
Fz[kN] as permanent load at L/4, L/2 and 3*L/4

- Basis of calculation of the load capacity is accordance with Eurocode 3 (EN 1993)
- Self weight considered.
- Safety factor is taken iinto account as 1,35.
- Deflection limit value is L/200.

Section Properties

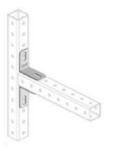

1	Profile Size Unit Weight			Cross Section Area Torsional Section Modules Torsion Moment of Inertia				of Inertia	Section Modules		
	(mm)		(kg)	(mm²) (cm³)		(cm ⁴)	(c	m ⁴)	(cm³)		
Н	В	S		Α	Wp	lp	ly	lz	Wy	Wz	
40	40	3	3,10	309,00	8,13	14,77	7,38	7,38	3,69	3,69	

[■] The section properties is determined according to the perforated section.


VERSY 50 Series

Flexible Design

V>EASY 50 Series



Base Module: 2.5 x 2.5 x 2.8 m

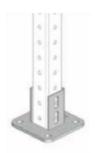
Smart Connection

PMKS-KD-450 Promega Connection

PMKS-KD-451 Promega Connection

PMKS-KD-452 Promega Connection

PMKS-MFS-040/050 Promega Connection

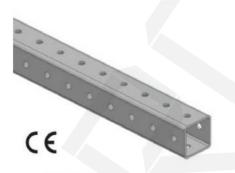

PMKS-PC-050 Promega Connection Promega Connection

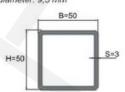
PMKS-TTA-040/050

PMKS-TDE-040/050 Promega Connection

PMKS-TTA-041/051 Promega Connection

PMKS-TTY-040/050 Promega Connection


PMKS-TTY-041/051 Promega Connection


PMKS-TTY-042/052 Promega Connection

ProMAKS Profile

PMKS-PRF-050-001

Delik arası mesafe: 25 mm Delik çapı: 9,5 mm Distance between holes: 25 mm Hole diameter: 9,5 mm

Connection Pieces

PMKS-KD-450

PMKS-KD-451

PMKS-KD-452

PMKS-MFS-040/050

PMKS-KOD-100-001

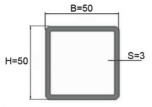
PMKS-PC-050 PMKS-TTA-040/050

PMKS-TDE-040/050

PMKS-TTA-041/051

PMKS-TTY-040/050 PMKS-TTY-041/051

PMKS-TTY-042/052

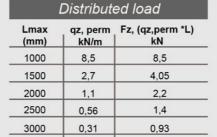

Medium Duty V-EASY Structural System

3500

Distance between holes: 25 mm Hole diameter: 9,5 mm

Service

Promaks is modular kit structural system, provide easy installation with self-threading bolt and medium load capacity due to its special design.



Materials and Type

Steel S235 JR

Coating

EN 1461 Hot-dip galvanized 92µm minimum Hot-dip of galvanize.

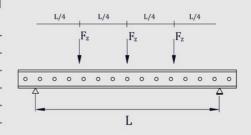
	0,19	0,665
azí	kN/ml as perm	anent load at L

							q _z							
	•	,	•					•	,	,		,	•	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Point load								
Lmax (mm)	Fz, perm kN								
1000	4,3								
1500	2,6								
2000	1,4								
2500	0,91								
3000	0,61								
3500	0,39								

Fz[kN] as permanent load at L/2

						Į ^I	Z		(×			
0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
7			5									2	7
-						L))		_	


2 /	2 Point loads									
Lmax (mm)	Fz, perm kN									
1000	3,2									
1500	1,5									
2000	0,8									
2500	0,52									
3000	0,34									
3500	0,24									

Fz[kN] as permanent load at L/2 and 2*L/3

		L	./3			L/3			L/3		
			/		Fz		F	z			
	0			0	<u> </u>	 	 •			 	_
Ľ	4					1					,

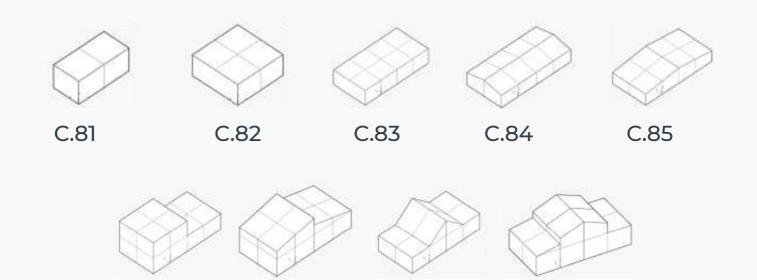
	3 Point loads								
Lmax (mm)	Fz, perm kN								
1000	2,4								
1500	1,1								
2000	0,6								
2500	0,35								
3000	0,26								
3500	0,17								

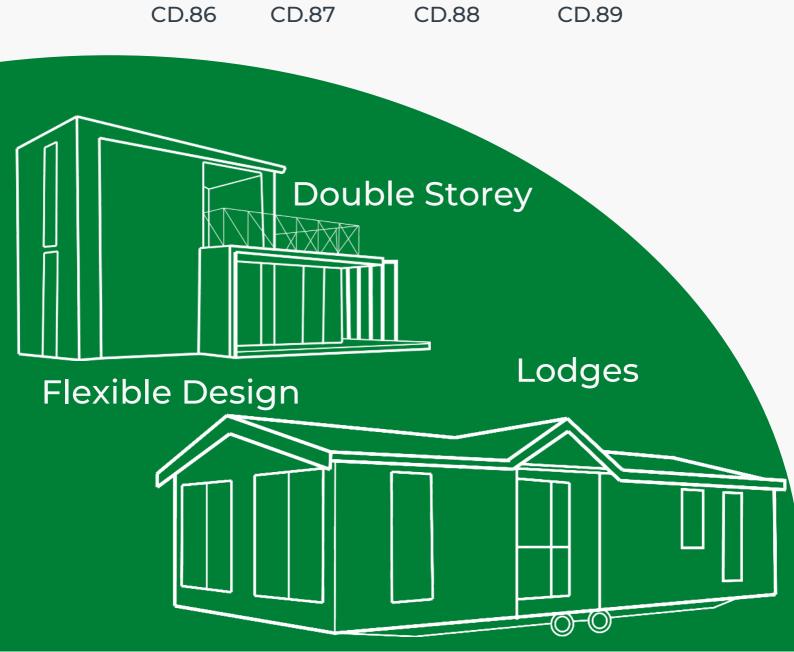
Fz[kN] as permanent load at L/4, L/2 and 3*L/4

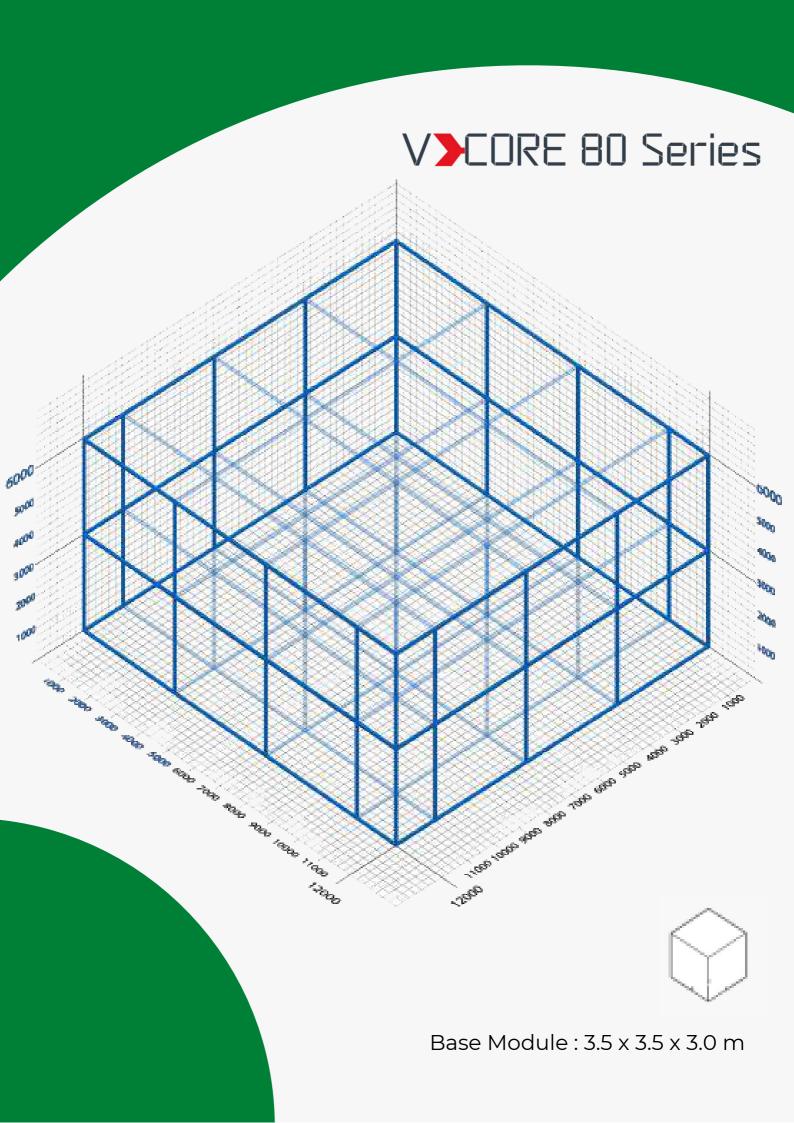
- Basis of calculation of the load capacity is accordance with Eurocode 3 (EN 1993)
- Self weight considered.
- Safety factor is taken iinto account as 1,35.
- Deflection limit value is L/200.

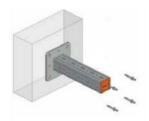
Section Properties

	Profile Size Unit Weight			Cross Section Area Torsional Section Modules Torsion Moment of Inertia			Moment	of Inertia	Section Modules		
	(mm)		(kg) (mm²) (cm³)		(cm ⁴)	(c	m⁴)	(cm³)			
Н	В	S		Α	Wp	lp	ly	lz	Wy	Wz	
50	50	3	4,00	432,00	13,19	33,07	16,53	16,53	6,61	6,61	


[■] The section properties is determined according to the perforated section.




V>CORE 80 Series



V>CORE 80 Series


PMKS-HK-080 Promega Connection

PMKS-HK-080 -Promega-Promega Connection

PMKS-TTA-080 Promega Connection

PMKS-KD-080 Promega Connection

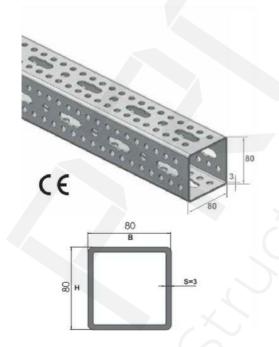
PMKS-KD-081 Promega Connection

PMKS-PC-080 Promega Connection

Smart Connection

PMKS-KD-082 Promega Connection

PMKS-KD-118 Promega Connection

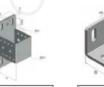


Connection Pieces

PMKS-MFS-080/081 Promega Connection

ProMAKS Profile

PMKS-PRF-080-001



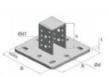
1

PMKS-HK-080

PMKS-KA-080

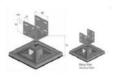
0 PMKS-KD-080

PMKS-KD-082

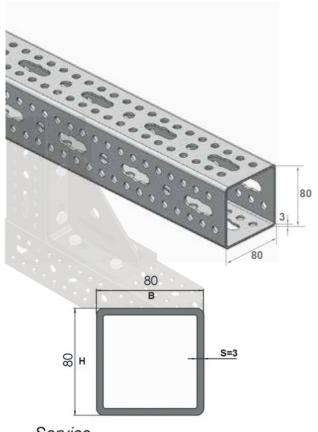

PMKS-KD-081

PMKS-KD-118


PMKS-PC-080


PMKS-TTA-080

PMKS-MFS-080



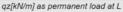
PMKS-MFS-081

PMKS-FOOT-80/81

Heavy Duty V-CORE Series Structural System

Service

Promaks is modular kit structural system, provide easy installation with self-threading bolt and high load capacity due to its special design.


Materials and Type

Steel S235 JR

Coating

EN 1461 Hot-dip galvanized 92µm minimum Hot-dip of galvanize.

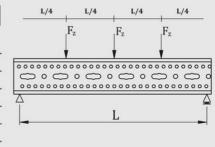
Distributed load				
Lmax (mm)	qz, perm kN/m	Fz, (qz,perm *L) kN		
1000	18,00	18,00		
1500	8,00	12,00		
2000	3,82	7,64		
2500	1,94	4,85		
3000	1,10	3,30		
3500	0,68	2,38		

, ,	• • •	* *	, ,	, ,	
	> 0 0				
	0000				
Δ					/ 10
		L			
-					-

Lmax (mm)	Fz, perm kN
1000	9,00
1500	6,00
2000	4,44
2500	3,14
3000	2,15
3500	1,54

Fz[kN] as permanent load at L/2

	F_z
\(\) I	<u>,</u>
- X	

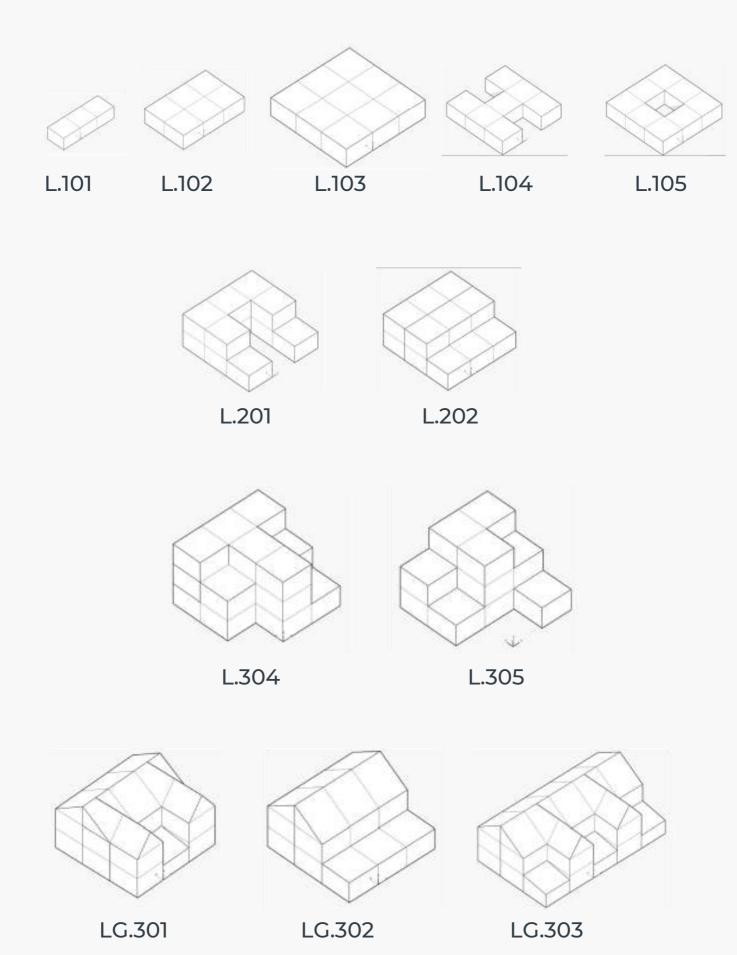

2 point loads					
Lmax (mm)	Fz, perm kN				
1000	6,83				
1500	4,50				
2000	2,82	2			
2500	1,80				
3000	1,21				
3500	0.87				

Fz[kN] as permanent load at L/2 and 2*L/3

L/3	L/3	L/3
	F _z 4	Fz
. /	•	•
00000000	0000000000	0000000000
0.0	000	0000
00000000	00000000000	0000000000
Ā		
)D	L	

3 point loads				
Lmax (mm)	Fz, perm kN			
1000	4,50			
1500	3,00			
2000	2,00			
2500	1,20			
3000	0,87			
3500	0,60			

Fz[kN] as permanent load at L/4, L/2 and 3*L/4

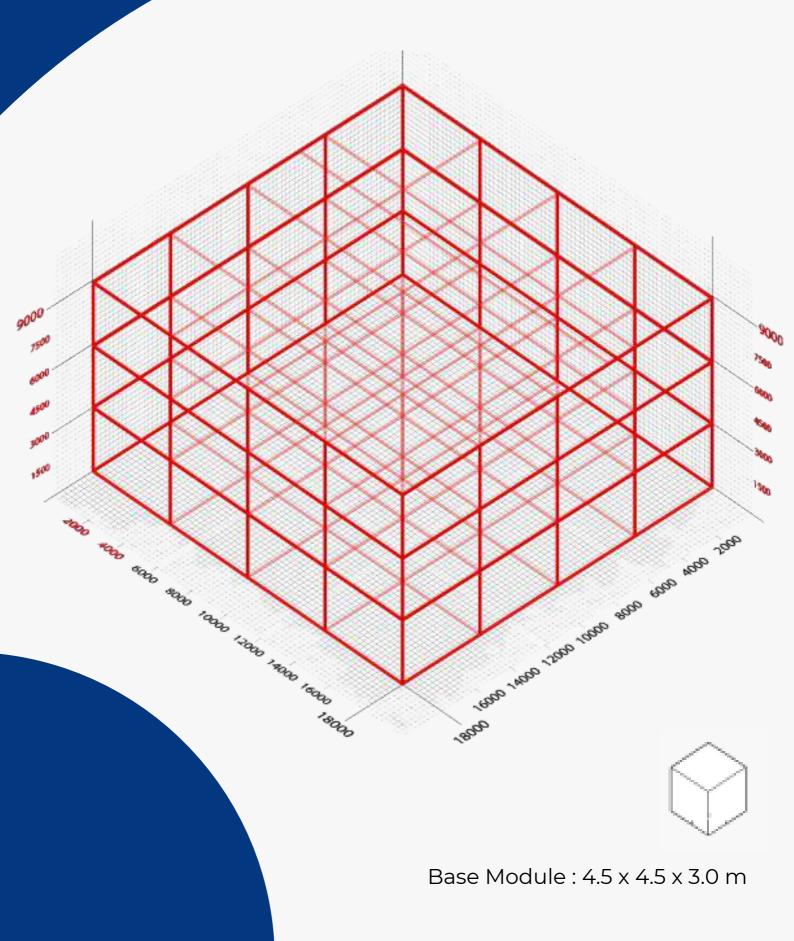


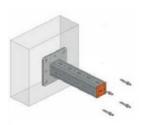
- Basis of calculation of the load capacity is accordence with Eurocode 3 (EN 1993)
- Self weight considered.
- Safety factor is taken into account as 1,35.
- Deflection limit value is L/200.

Section Properties

F	Profile Siz	e	Unit Weight	Cross Section Area	Torsional Section Modules	Torsion Moment of Inertia	Moment	of Inertia	Section	Modules
	(mm)		(kg)	(mm²)	(cm³)	(cm ⁴)	(c	m ⁴)	(cı	m³)
Н	В	S		Α	Wp	lp	ly	lz	Wy	Wz
80	80	3	5,74	510,00	35,51	108,82	54,41	54,41	13,60	13,60

V>LINE 100 Series


VILINE 100 Series


V>LINE 100 Series

VILINE 100 Series

Smart Connection

PMKS-HK-100 Promega Connection

PMKS-HK-100 -Promega-Promega Connection


PMKS-TTA-100 Promega Connection

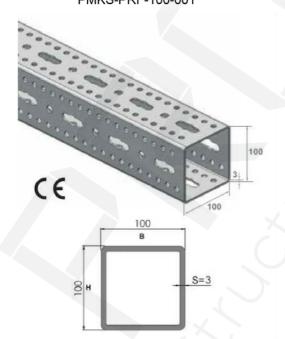
PMKS-KD-120 Promega Connection

PMKS-KD-121 Promega Connection

PMKS-PC-100 Promega Connection

PMKS-KD-101 Promega Connection

PMKS-foot-100/101 Promega Connection



Connection Pieces

PMKS-MFS-100/101 Promega Connection

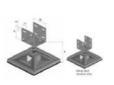
ProMAKS Profile

PMKS-PRF-100-001

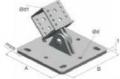
PMKS-HK-100

PMKS-KA-100

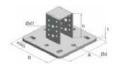
PMKS-KD-100


PMKS-KD-101

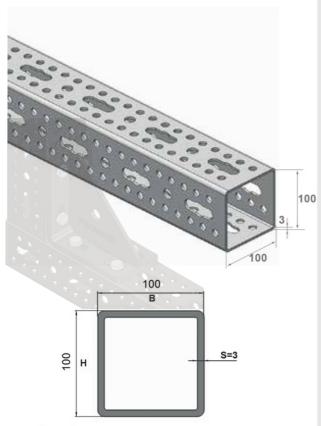
PMKS-KD-120


PMKS-KD-121

PMKS-FOOT-100/101



PMKS-MFS-100

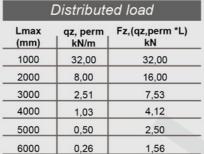

PMKS-MFS-101

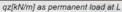
PMKS-PC-100 PMKS-TTA-100

Heavy Duty V-LINE Series Structural System

Service

Promaks is modular kit structural system, provide easy installation with self-threading bolt and high load capacity due to its special design.


Materials and Type


Steel S235 JR

Coating

EN 1461 Hot-dip galvanized

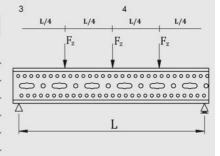
92µm minimum Hot-dip of galvanize.

				7
-	 0000	 	 -	
	$\stackrel{\circ}{\Rightarrow} \stackrel{\circ}{\circ}$			
^		-	 -	-
		L		
-				

F	Point load	< /
Lmax (mm)	Fz, perm kN	
1000	16,00	
2000	7,90	
3000	4,70	
4000	2,50	
5000	1,50	
6000	0,99	

Fz[kN] as permanent load at L/2

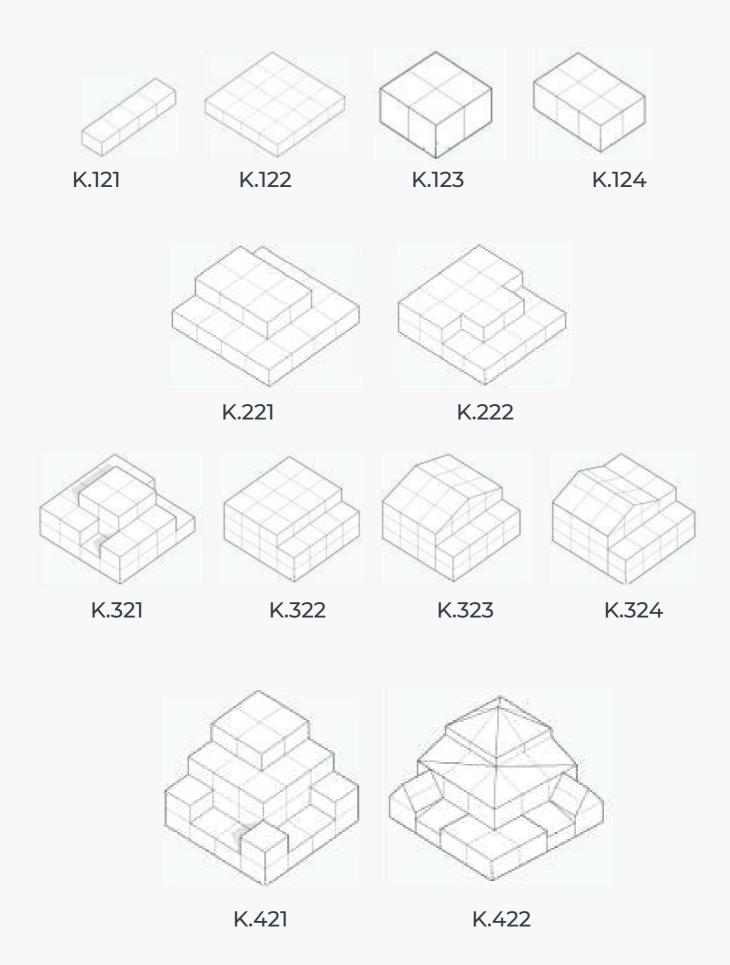
	$\perp^{\mathbf{F_{Z}}}$	
0.0		000
<u>Δ</u>	L	

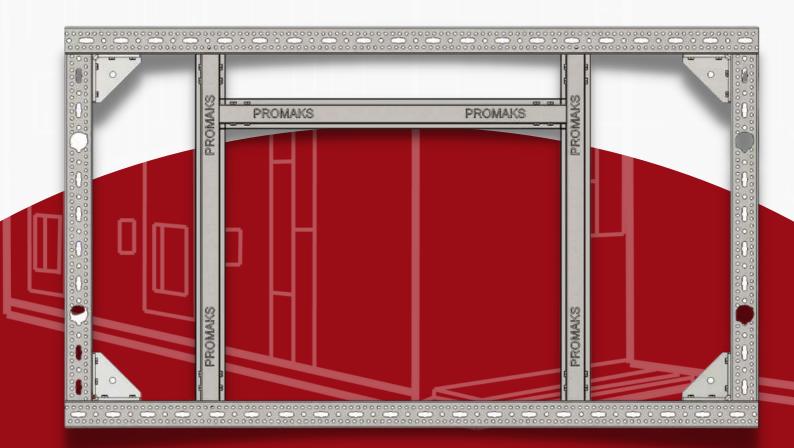

2 point loads					
Lmax (mm)	Fz, perm kN				
1000	12,00				
2000	5,90	- 3			
3000	2,71				
4000	1,52				
5000	0,91				
6000	0.58				

Fz[kN] as permanent load at L/2 and 2*L/3

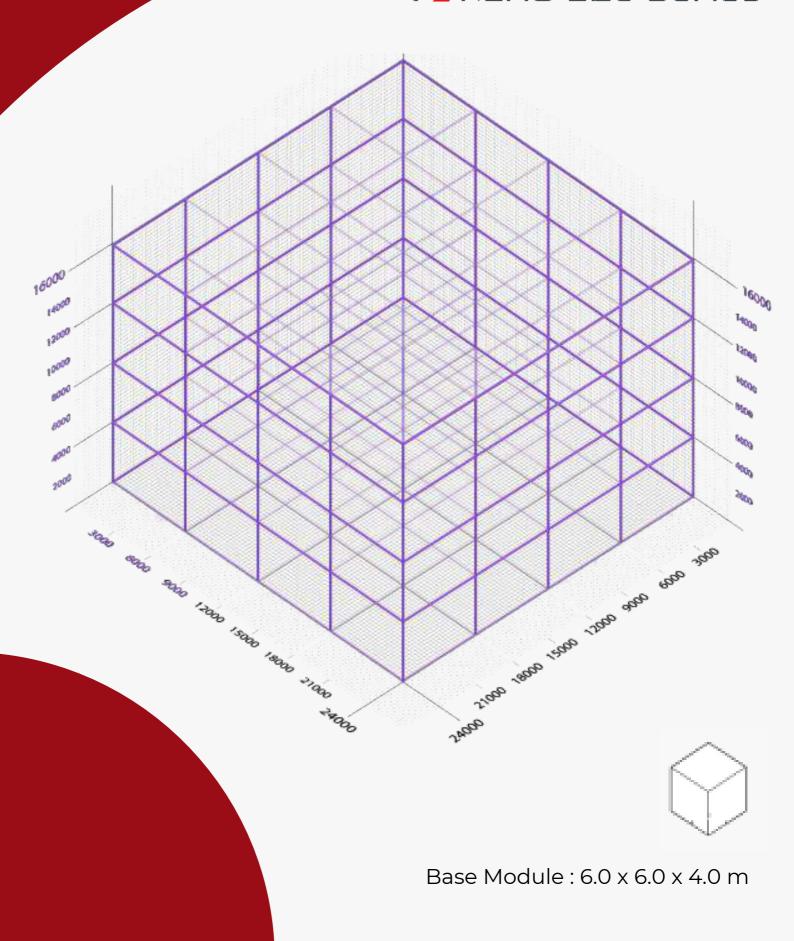
	L/3		L/3		L/3
		F_z	4	Fz	
		+			
000	00000	0000	00000	00000	000000
					000
					4
			T		

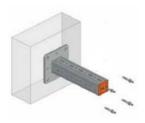
3 p	3 point loads					
Lmax (mm)	Fz, perm kN					
1000	8,00					
2000	3,90					
3000	1,96					
4000	1,10					
5000	0,65					
6000	0,40					


Fz[kN] as permanent load at L/4, L/2 and 3^{\star}L/4


- Basis of calculation of the load capacity is accordance with Eurocode 3 (EN 1993)
- Self weight considered.
- Safety factor is taken into account as 1,35.
- Deflection limit value is L/200.

Section Properties


	Profile Siz	ze	Unit Weight	Cross Section Area	Torsional Section Modules	Torsion Moment of Inertia	Moment	of Inertia	Section	Modules
	(mm)		(kg)	(mm²)	(cm³)	(cm ⁴)	(0	:m ⁴)	(c	m³)
Н	В	S	X	Α	Wp	lp	ly	lz	Wy	Wz
100	100	3	7,3	750,00	56,39	242,23	121,12	121,12	24,22	24,22



Smart Connection

PMKS-HK-120 Promega Connection

PMKS-HK-120 -Promega-Promega Connection

PMKS-TTA-120 Promega Connection

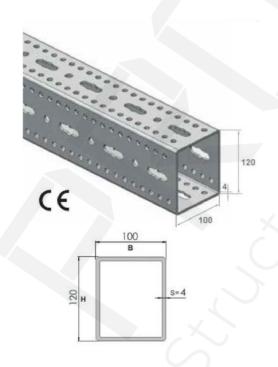
PMKS-KD-120 Promega Connection

PMKS-KD-121 Promega Connection

PMKS-PC-120 Promega Connection

PMKS-KD-101 Promega Connection

PMKS-foot-120/121 Promega Connection



Connection Pieces

PMKS-MFS-120/121 Promega Connection

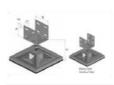
ProMAKS Profile

PMKS-PRF-120-001

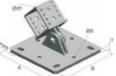
PMKS-HK-120

PMKS-KA-120

PMKS-KD-100

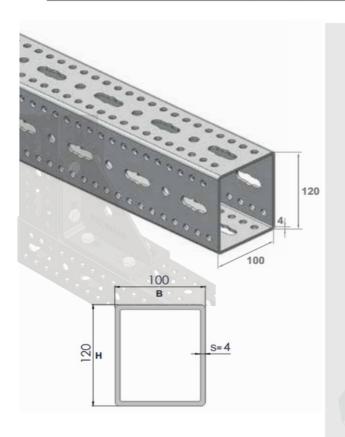

PMKS-KD-101

PMKS-KD-120


PMKS-KD-121

PMKS-FOOT-120/121

PMKS-MFS-120



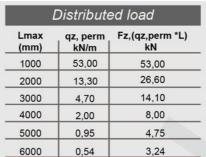
PMKS-MFS-121

PMKS-PC-120 PMKS-TTA-120

Heavy Duty V-KING Series Structural System

Service

Promaks is modular kit structural system, provide easy installation with self-threading bolt and high load capacity due to its special design.



Materials and Type

Steel S235 JR

Coating

EN 1461 Hot-dip galvanized 92µm minimum Hot-dip of galvanize.

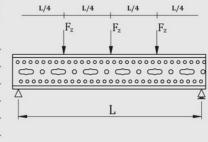
qz[kN/m] as permanent load at L

			q_{z}				
* *	• •	, ,	• •		v v	,	
0000	00000	0000	0000	0000	0000	000	000
0	0	0 0	000	\Rightarrow		00	\Rightarrow
000	00000	0000	0000	0000	000	0000	000
Δ							
			I				

Point load				
Lmax (mm)	Fz, perm kN	\angle		
1000	26,00			
2000	13,30	_		
3000	8,08			
4000	5,20			
5000	3,20			
6000	2,10			

Fz[kN] as permanent load at L/2

		$F_{\mathbf{Z}}$		
		•		
	000	> ° C	000	000
Δ	00000	000000	00000	000000
		L		

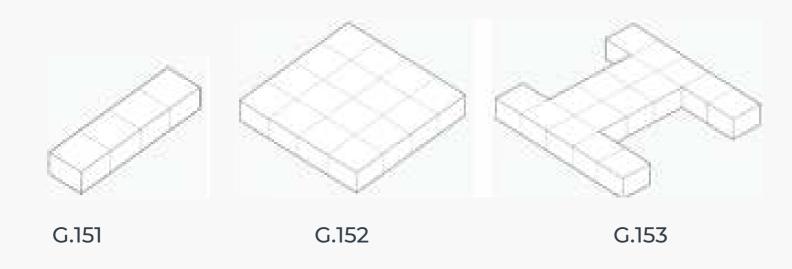

2 point loads					
Lmax (mm)	Fz, perm kN				
1000	20,00				
2000	9,90				
3000	5,50				
4000	3,00				
5000	1,80				
6000	1,20				

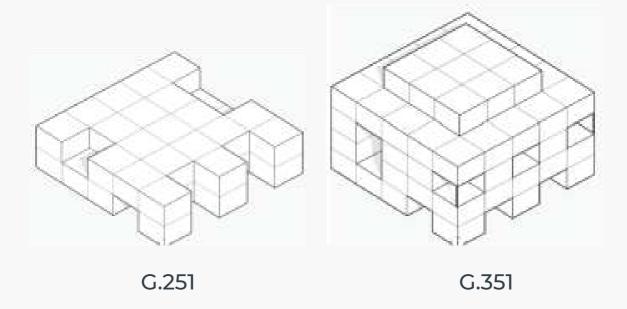
Fz[kN] as permanent load at L/2 and 2*L/3

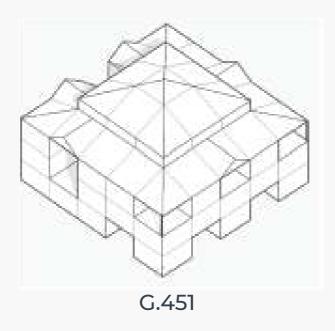
	L/3		L/3	L/3	
	/	Fz	4	Fz	
		•		•	
0000	00000	00000	00000	000000000	00
0	0	000	000	00000	\supset
000	0000	00000	00000	000000000	00
Δ					
T					
A			L		

3 p	3 point loads					
Lmax (mm)	Fz, perm kN					
1000	13,40					
2000	6,60					
3000	3,90					
4000	2,20					
5000	1,30					
6000	0,86					

Fz[kN] as permanent load at L/4, L/2 and 3*L/4

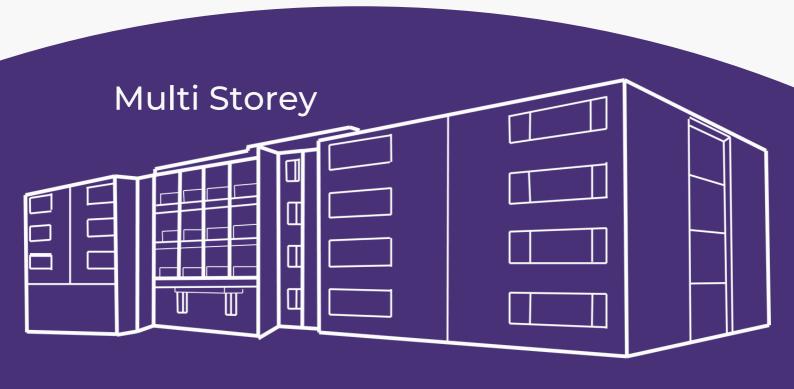



- Basis of calculation of the load capacity is accordance with Eurocode 3 (EN 1993)
- Self weight considered.
- Safety factor is taken into account as 1,35.
- Deflection limit value is L/200.


Section Properties

	Profile Siz	ze	Unit Weight	Cross Section Area	Torsional Section Modules	Torsion Moment of Inertia	Moment	of Inertia	Section	Modules
	(mm)		(kg)	(mm²)	(cm³)	(cm ⁴)	(c	m ⁴)	(c	m³)
Н	В	S		Α	Wp	lp	ly	lz	Wy	Wz
120	100	4	11	1147,00	89,02	435,10	241,92	193,18	40,32	38,64

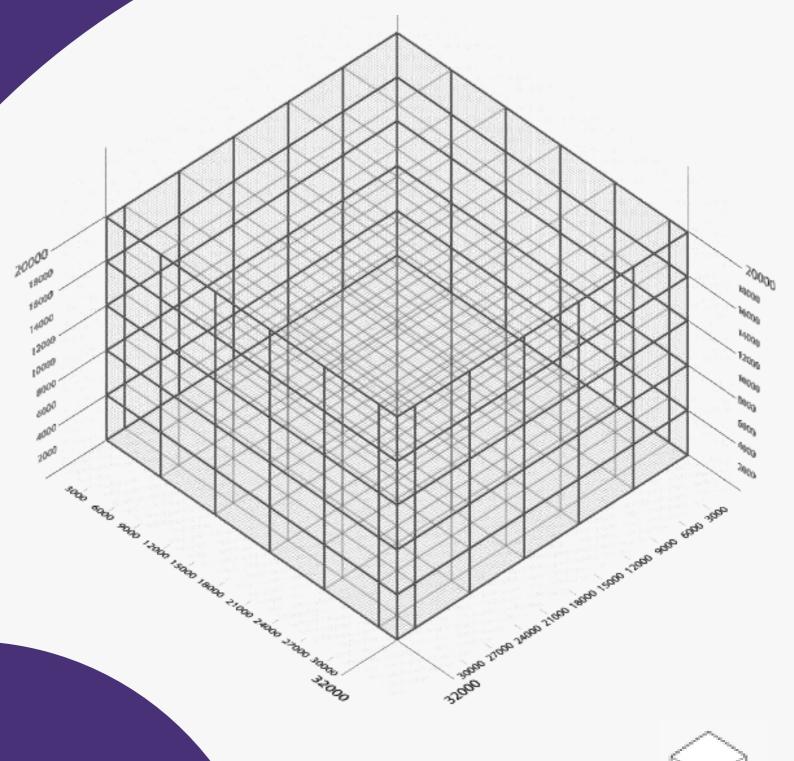
V>GIANT 150 Series



VJGIANT 150 Series

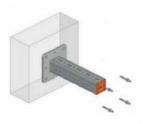
V>GIANT 150 Series

Residential


Flexible Design

Utility

Commercial


V>GIANT 150 Series

Base Module: 6.0 x 6.0 x 4.0 m

Smart Connection

PMKS-HK-150 Promega Connection

PMKS-HK-150

Connection

-Promega-Promega

PMKS-KD-120 Promega Connection

PMKS-KD-101 Promega Connection

PMKS-KD-121 Promega Connection

PMKS-foot-150/151 Promega Connection

PMKS-PC-150 Promega Connection

Connection Pieces

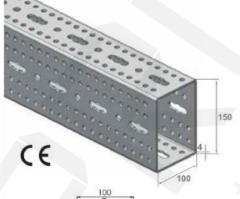
PMKS-MFS-150/151 Promega Connection

ProMAKS Profile

Promega Connection

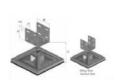
PMKS-TTA-150

PMKS-PRF-150-001

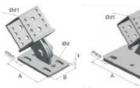

PMKS-KA-120

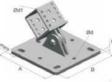
PMKS-KD-100

PMKS-KD-101

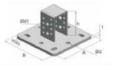

S H

PMKS-HK-150

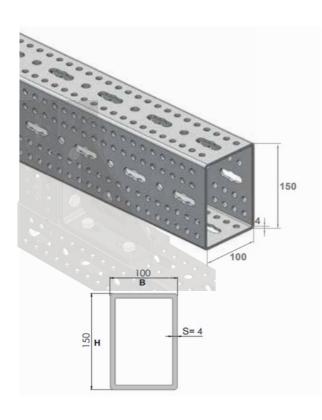

PMKS-KD-120


PMKS-KD-121

PMKS-FOOT-150/151


PMKS-MFS-150

PMKS-MFS-151



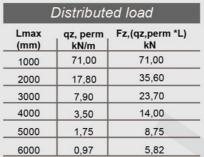
PMKS-PC-150

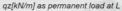
PMKS-TTA-150

Heavy Duty V-GIANT Series Structural System

Service

Promaks is modular kit structural system, provide easy installation with self-threading bolt and high load capacity due to its special design.


Materials and Type


Steel S235 JR

Coating

EN 1461 Hot-dip galvanized

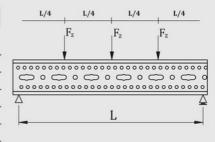
92µm minimum Hot-dip of galvanize.

			q_z				
, , ,	, ,	• •	1	, ,	,	, ,	7
00000							
000							
Δ						7	4
_			L				_

Point load				
Lmax (mm)	Fz, perm kN			
1000	35,30			
2000	17,80			
3000	11,60			
4000	8,70			
5000	5,40			
6000	3,60			

Fz[kN] as permanent load at L/2

			F,		
			,		
	0000 000				
	0000				
\triangle					4
_		X.	L		_

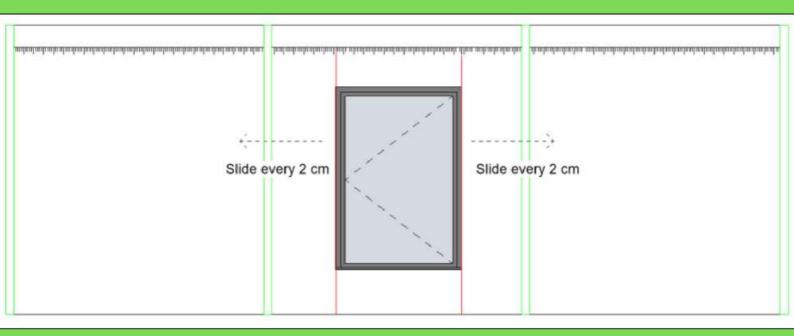

	2 point loads
Lmax (mm)	Fz, perm kN
1000	26,00
2000	13,30
3000	8,80
4000	5,20
5000	3,10
6000	2,10

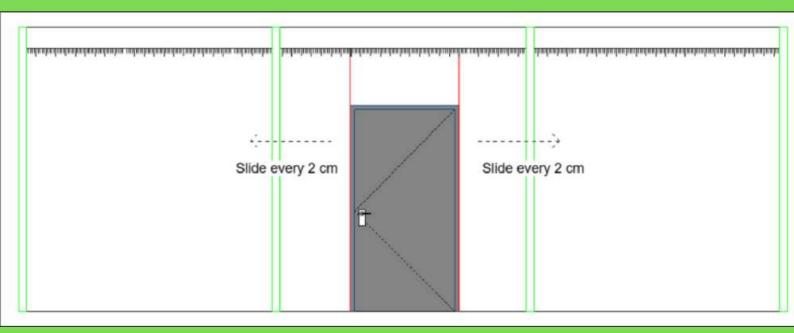
Fz[kN] as permanent load at L/2 and 2*L/3

	Г
	F_z
,	,
	000000000
	000
0000000	
L	3

3 point loads					
Lmax (mm)	Fz, perm kN				
1000	17,90				
2000	8,90				
3000	5,90				
4000	3,60				
5000	2,30				
6000	1,50				

Fz[kN] as permanent load at L/4, L/2 and 3*L/4


- Basis of calculation of the load capacity is accordance with Eurocode 3 (EN 1993)
- Self weight considered.
- Safety factor is taken into account as 1,35.
- Deflection limit value is L/200.


Section Properties

Profile Size		Area		Torsional Section Modules Torsion Moment of Inertia		Moment of Inertia		Section Modules (cm³)		
Н	В	S	(kg)	A	Wp	lp	ly	lz	Wy	Wz
150	100	4	12	1235,00	112,06	618,26	404,80	213,46	53,97	42,69

WINDOWS DOORS

ProMAKS system flexibility allows for late stage design changes even on the construction site

THANK YOU

